浅谈信安文章搜索引擎
字数 1537 2025-08-12 11:33:45
信息安全文章搜索引擎实现全流程详解
1. 搜索引擎基础架构
搜索引擎的实现流程主要分为三个核心阶段:
- 数据获取:通过爬虫或主动推送方式收集信息
- 数据检索:对收集的数据建立索引结构
- 数据搜索:基于索引执行查询并返回相关性排序结果
2. 数据获取实现方案
2.1 数据来源分类
信息安全文章主要来自三类站点:
- 安全社区:先知社区、安全客、嘶吼、FreeBuf、安全脉搏、91RI、看雪论坛、乌云知识库等
- 创作社区:博客园、CSDN、简书、知乎、腾讯云社区等
- 个人博客:Hexo主题博客、WordPress博客等
2.2 爬取数据要素
每篇文章需要获取以下核心字段:
- 发布日期
- 作者
- 标题
- 正文内容
- 文章链接
- 网站域名
2.3 爬取技术实现
2.3.1 基于网页特征的爬取
使用Scrapy框架示例:
import scrapy
from urllib import parse
from crawlersec.items import CrawlersecItem
from crawlersec.util import html_entity
class HexoNextSpider(scrapy.Spider):
name = "hexo_next"
start_urls = ["https://chybeta.github.io/"]
def parse(self, response):
urls = response.xpath("//a[@class='post-title-link']/@href").extract()
for url in urls:
absolute_url = parse.urljoin(response.url, url)
yield scrapy.Request(url=absolute_url, callback=self.parse_text)
next_page = response.xpath("//a[@class='extend next']/@href").extract_first()
if next_page:
absolute_url = parse.urljoin(response.url, next_page)
yield scrapy.Request(url=absolute_url, callback=self.parse)
def parse_text(self, response):
item = CrawlersecItem()
item['url'] = response.url
item['title'] = html_entity(response.css(".post-title::text").extract_first().strip())
item['author'] = get_author_by_url(response.url)
item['date'] = response.xpath("//time/text()").extract_first().strip()
content = ""
for text in response.xpath("//div[@class='post-body']//text()").extract():
content += "".join(text.split())
item['content'] = html_entity(content)
item['domain'] = list(parse.urlparse(response.url))[1]
yield item
2.3.2 基于API接口的爬取
安全客API示例:
import scrapy
from urllib import parse
import simplejson
from crawlersec.items import CrawlersecItem
from crawlersec.util import html_entity
class AnquankeSpider(scrapy.Spider):
name = "anquanke"
allowed_domains = ["anquanke.com"]
base_url = "https://www.anquanke.com/"
start_urls = ["https://api.anquanke.com/data/v1/posts?size=20"]
def parse(self, response):
prefix_url = "https://www.anquanke.com/post/id/"
res = simplejson.loads(response.text)
posts = res['data']
for post in posts:
item = CrawlersecItem()
item['author'] = post['author']['nickname']
item['date'] = post['date']
item['title'] = post['title']
url = prefix_url + str(post['id'])
item['url'] = url
item['domain'] = list(parse.urlparse(self.base_url))[1]
yield scrapy.Request(url=url, meta={'article_item': item}, callback=self.parse_text)
next_url = res['next']
if next_url:
yield scrapy.Request(url=next_url, callback=self.parse)
def parse_text(self, response):
item = response.meta.get('article_item', '')
content = ""
for text in response.xpath("//text()").extract():
content += "".join(text.split())
item['content'] = html_entity(content)
yield item
2.4 反爬策略与绕过技术
2.4.1 User-Agent检测绕过
实现随机User-Agent中间件:
class RandomUserAgentMiddleware(object):
def process_request(self, request, spider):
rand_use = random.choice(USER_AGENT_LIST)
if rand_use:
request.headers.setdefault('User-Agent', rand_use)
2.4.2 IP限制绕过
代理IP池实现:
class ProxyMiddleWare(object):
def process_request(self, request, spider):
proxy = self.get_random_proxy()
request.meta['proxy'] = proxy
def process_response(self, request, response, spider):
if response.status != 200:
proxy = self.get_random_proxy()
request.meta['proxy'] = proxy
return request
return response
def get_random_proxy(self):
with open('./proxies.txt', 'r') as f:
proxies = f.readlines()
return random.choice(proxies).strip()
2.4.3 Cookie验证绕过
两种方法:
- 手动登录获取Cookie并添加到爬虫
- 实现模拟登录流程
2.4.4 Header验证绕过
添加必要请求头:
headers = {
"X-Requested-With": "XMLHttpRequest",
"Referer": "https://www.kanxue.com/"
}
yield scrapy.FormRequest(url=url, formdata=data, headers=headers, callback=self.parse)
3. 数据检索技术
3.1 倒排索引原理
倒排索引(反向索引)结构:
- 正向关系:文档 → 包含的关键词
- 倒排关系:关键词 → 包含该关键词的文档
示例:
文档1内容:it is sunny today
文档2内容:today is rainy
倒排索引表:
| 关键词 | 文档号[频率] | 位置 |
|---|---|---|
| it | 1[1] | 1 |
| is | 1[1] | 2 |
| is | 2[1] | 2 |
| sunny | 1[1] | 3 |
| today | 1[1] | 4 |
| today | 2[1] | 1 |
| rainy | 2[1] | 3 |
3.2 Elasticsearch实现
Elasticsearch Mapping配置示例:
{
"mappings": {
"properties": {
"url": {"type": "keyword"},
"title": {
"type": "text",
"analyzer": "ik_max_word",
"search_analyzer": "ik_max_word",
"fields": {
"keyword": {"type": "keyword", "ignore_above": 256}
}
},
"author": {
"type": "text",
"analyzer": "ik_max_word",
"search_analyzer": "ik_max_word",
"fields": {
"keyword": {"type": "keyword", "ignore_above": 256}
}
},
"date": {
"type": "date",
"format": "yyyy-MM-dd HH:mm:ss||yyyy-MM-dd||epoch_millis"
},
"content": {
"type": "text",
"analyzer": "ik_max_word",
"search_analyzer": "ik_max_word"
},
"domain": {
"type": "text",
"analyzer": "ik_max_word",
"search_analyzer": "ik_max_word",
"fields": {
"keyword": {"type": "keyword", "ignore_above": 256}
}
}
}
}
}
4. 数据搜索算法
4.1 搜索流程
- 查询分词:对输入查询字符串进行分词
- 相关性计算:计算查询与文档的相关性得分
4.2 相关性计算模型
4.2.1 TF-IDF权重计算
- Term Frequency (tf):词在文档中出现的频率,越高越重要
- Document Frequency (df):包含该词的文档数,越高越不重要
权重计算公式:
weight = tf * log(N/df)
其中N是文档集合中总文档数
4.2.2 向量空间模型(VSM)
- 文档向量:Document Vector = {weight1, weight2, ..., weightN}
- 查询向量:Query Vector = {weight1, weight2, ..., weightN}
相关性打分(余弦相似度):
score = (Q·D) / (|Q| * |D|)
其中Q·D表示向量点积,|Q|和|D|表示向量模长
5. 系统实现要点总结
- 数据获取:需考虑多种来源和反爬策略
- 数据清洗:统一格式,处理重复内容
- 索引构建:合理设计倒排索引结构
- 搜索算法:优化相关性排序效果
- 性能优化:分布式爬取、索引分片等
- 结果展示:友好的用户界面和结果呈现
通过以上完整流程,可以构建一个专业的信息安全领域垂直搜索引擎,为用户提供精准的文章检索服务。